If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-13=3
We move all terms to the left:
x^2+6x-13-(3)=0
We add all the numbers together, and all the variables
x^2+6x-16=0
a = 1; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·1·(-16)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-10}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+10}{2*1}=\frac{4}{2} =2 $
| 5x-4-4=36 | | -7=2/z+1 | | (y/15)+42=38 | | 2r^2+3r-1=0 | | 3x-20=3(10-x) | | x(x-15)=18 | | 2x^2+7x+2=00 | | -3r-12=-5+r | | 4.7+d=-3 | | x+8^2+10=-50 | | 4p+20=2(4p-2) | | 3(1-d=2-(2d+4) | | 8x-7=4(2x+3) | | 5/x=10/x+1 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | -4(u-5)=-2u+40 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | 2x^2+48=12 | | 0=50-(1.9xD) | | 4(z-2)=-8+4z | | -4/3x+2=3x-11 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | 4(c-2)+3=2+c-7 | | 15y2+11y+2=0 | | 21-3x=88 | | 17=-13=9x | | 12x+38=6x-175 | | 7+m=11m-10(m+3 | | 24=-8x+3(x-2) | | .5x+.25(50)=26.5 | | (5b-4)(b+3)=0 | | 2x^2+14x-390=0 |